If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20n^2+42n-20=0
a = 20; b = 42; c = -20;
Δ = b2-4ac
Δ = 422-4·20·(-20)
Δ = 3364
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3364}=58$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(42)-58}{2*20}=\frac{-100}{40} =-2+1/2 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(42)+58}{2*20}=\frac{16}{40} =2/5 $
| -8x+5=1-4(x-8) | | -3g+6+2g=1/ | | (6x+2)(5x-2)(7x)=180 | | 8x6x+12=8+ | | 8v-4(v+9)=8 | | 10x+(3)(5)=8x+13+8 | | 2(x+1)=4x-12 | | 90=3x-10 | | 2w–1=29 | | 6x+8=2x-12+52 | | 8(4+2m)=96 | | 3x-18=5(1-4x) | | 4q=32q^2 | | -11x-202=77-2x | | 14=11+8/w(6) | | 0.666(1+n)=-0.5n | | 1500000+x=2013000+0.x | | 7x-58=13x+122 | | 1500000+x=2013000+.0x | | 1500000+x=2013000+.x | | 5x-91=-12x+164 | | -15x-132=180-2x | | 7(t+2)+2t-4t=2t-4 | | 10k^2-18k+8=0 | | -137-10x=115+4x | | 1500000+x=2013000+.05x | | 3n+n=2 | | 3x+-2=2x+1 | | -x-107=103-8x | | 3t+-9=6 | | -38-x=3x+86 | | 4+2r=14 |